Chapter 3 & 4: Reaction Stoichiometry part 1

Read: BLB 3.6–3.7
HW: BLB 3:57, 64, 73, 79
Supplemental: Rxns 3–5

Know:
- Problem Solving with Chemical Reactions
- Limiting Reactants (Ch. 3)
- Solution Reactions (Ch. 4)
- Gas phase Reactions (Ch. 10)

Bonus deadline for SCT #10: ____________
FINAL SCT DEADLINE: ______________

Missed Exam 1, 2 or 3 due to an excused absence?
Make-up Exam: Covers material from Exams 1–3, multiple choice. You must sign up by completing the request form & giving it to me (download)

Need help?? Get help!! TAs in CRC (211 Whitmore), SI Sessions, Look at "Help Available"

Final Exam: ________________

Practice Problems:

What is the driving force for the reaction between NaOH and HClO₄?

- a. formation of a precipitate
- b. formation of a weak or non-electrolyte (neutralization)
- c. formation of a gas
- d. no driving force: no reaction occurs

What are the spectator ions when KCl and NaNO₃ react?

- a. Na⁺(aq) and Cl⁻(aq)
- b. Na⁺(aq) and NO₃⁻(aq)
- c. K⁺(aq) and Cl⁻(aq)
- d. K⁺(aq) and NO₃⁻(aq)
- e. Na⁺(aq), K⁺(aq) and NO₃⁻(aq)
- f. K⁺(aq), Cl⁻(aq) and NO₃⁻(aq)
- g. K⁺(aq), Na⁺(aq), Cl⁻(aq) and NO₃⁻(aq)
IMPORTANT CONNECTIONS

- **Avogadro’s number**
 - Connects molecules (or atoms) to ?
 - Connects microscopic properties to ?

- **Conservation of Mass**
 - Mass of Products = Mass of ?
 - Balance the reaction

- **Balanced Chemical Equation**
 - Connects moles (molecules) of reactants with moles (molecules) of ?
 - Related to conservation of Mass

- **Formula weight**
 - Connects mass to ?
 - Connects a property that can be measured (determined) experimentally to moles (or molecules) of substance given in the balanced reaction.

- **Empirical Formula**
 - Tells relative number of what in a molecule?
 - Obtained from % mass or molecular formula

Problem Solving Process

1. Write balanced chemical equation
2. Make a table:
 - Fill in given information
3. Note connections between measured quantities and moles
 - Mass \[?\] \rightarrow moles
 - Volume \[?\] \rightarrow moles (solutions)
 - \[P, V, T\] \[?\] \rightarrow moles (gases)
4. Fill in table until you are able to solve the problem
5. Make sure your answer is REASONABLE
6. TRY different things!
EXAMPLE: Methane reacts with water to produce hydrogen gas and carbon monoxide. If 8.0 g of methane reacts with 9.0 g of water, how many grams of hydrogen gas will be produced?

Example:

If 36.6 g of C₂H₅OH reacts with 63.8 g of O₂, how many grams of CO₂ will be produced?

A) 26.0 g
B) 43.2 g
C) 58.5 g
D) 70.4 g
E) 100.4 g
Limiting reagent

- **Reactant** that is used up first
- Determines the amount of product
- **Must start with a balanced reaction**

BE SURE TO TEST BOTH REACTANTS

\[
\text{C}_2\text{H}_5\text{OH} + 3\text{O}_2 \rightarrow 2\text{CO}_2 + 3\text{H}_2\text{O}
\]

0.800 moles 2.00 moles