Chapter 3 of Atkins: The First Law: the machinery

Chapter 3.1 - 3.3

State Functions

* Exact and inexact differentials
* Changes in internal energy
* The Joule experiment
* Changes in internal energy at constant p

Temperature Dependence of Enthalpy

* Changes in enthalpy at constant volume
* Isothermal compressibility
* Joule-Thomson effect

$C_V \text{ vs. } C_p$
State vs. Path Functions

state functions: Properties independent of how the substance is prepared, and are functions of variables such as pressure and temperature (define the state of system)

examples: U: internal energy
 H: enthalpy

path functions: Properties that relate to the preparation of the state of the substance

examples: w: work done preparing a state
 q: energy transferred as heat

state functions: system possesses U and H

path functions: states do not possess q and w
State Functions

Initially:
state has internal energy U_i

Path 1:
adiabatic expansion to final state with internal energy U_f
work done on the system is w

Path 2:
non-adiabatic expansion to final state with U_f
q' and w' are both done on the system

U: property of state
numerically same value of ΔU

w, q: property of path
Exact & Inexact Differentials

Exact Differential:
System is taken along a path, with $\Delta U = U_f - U_i$, and the overall change is the sum of the infinitesimal changes along the path (i.e., an integral):

$$\Delta U = \int_i^f dU$$

U is independent of path - path independence is expressed by saying that dU is an **exact differential** - an infinitesimal quantity, which when integrated gives a path independent result.

Inexact Differential:
System is heated, total energy transferred as heat is the sum of individual contributions along each point of the path:

$$q = \oint_{\text{path}} dq$$

Do not write Δq: q is not a state function, energy is not $q_f - q_i$.
Numerically, q depends upon the path of integration (e.g., adiabatic vs. non-adiabatic) - path dependence is expressed by saying that dq is an **inexact differential** - infinitesimal quantity that depends upon the path (dw is also an **inexact differential**).
Work, heat, internal energy and pathways

Consider a perfect gas in a cylinder with a piston:
Initial state \(T, V_i \)
Final state \(T, V_f \)

Change of state:

Path 1: free expansion against no external pressure
Path 2: reversible isothermal expansion
Path 3: irreversible isothermal expansion against \(p_{\text{ext}} \neq 0 \)

Calculate \(q \), \(w \) and \(U \) for each pathway

All pathways: internal energy arises from kinetic energy of molecules, so since processes are isothermal, \(\Delta U = 0 \), so \(q = -w \)

Path 1: free expansion, \(w = 0 \), so \(q = 0 \)
Path 2: \(w = -nRT \ln(V_f/V_i) \), so \(q = nRT \ln(V_f/V_i) \)
Path 3: \(w = -p_{\text{ext}} \Delta V \), so \(q = p_{\text{ext}} \Delta V \)
For a closed system of constant composition, \(U \) is function of \(V \) and \(T \) (possible to express \(p \) in terms of \(V \) and \(T \), so \(p \) is not independent here)

Say \(V \) makes a small change to \(V + dV \) at constant \(T \):

\[
U' = U + \left(\frac{\partial U}{\partial V} \right)_T dV
\]

or \(T \) changes to \(T + dT \) at constant \(V \):

\[
U' = U + \left(\frac{\partial U}{\partial T} \right)_V dT
\]

The coefficients \((\partial U/\partial V)_T \) and \((\partial U/\partial T)_V \) are **partial derivatives** of \(U \) with respect to \(V \) and \(T \), respectively (or, slopes of \(U \) vs \(V \) at constant \(T \) and \(U \) vs \(T \) at constant \(V \)) - if both \(V \) and \(T \) change infinitesimally (recall \(dVdT = 0 \)):

\[
U' = U + \left(\frac{\partial U}{\partial V} \right)_T dV + \left(\frac{\partial U}{\partial T} \right)_V dT
\]
Changes in Internal Energy, 2

These infinitesimal changes in conditions imply U' differs from U by an infinitesimal amount dU; thus,

$$U' = U + dU = U + \left(\frac{\partial U}{\partial V} \right)_T dV + \left(\frac{\partial U}{\partial T} \right)_V dT;$$

$$dU = \left(\frac{\partial U}{\partial V} \right)_T dV + \left(\frac{\partial U}{\partial T} \right)_V dT$$

Infinitesimal changes in V and T result in an infinitesimal change in U, with constants of proportionality being the **partial derivatives**

remember: these give a *slope of property of interest against one variable*, with all other variables held constant

it is important to keep in mind that partial derivatives all have physical meaning, as well as being a useful mathematical tool

Recall that $(\partial U/\partial T)_V = C_V$ (i.e., the change in internal energy at constant volume with change temperature is the heat capacity at constant volume)
Graphic Illustration

Internal energy, \(U \)

\[U + \left(\frac{\partial U}{\partial V} \right)_{T} \, dV \]

Volume, \(V \)

Temperature, \(T \)

Internal energy, \(U \)

\[U + \left(\frac{\partial U}{\partial T} \right)_{V} \, dT \]

Volume, \(V \)

Temperature, \(T \)
Graphic Illustration

\[U + \left(\frac{\partial U}{\partial V} \right)_T dV + \left(\frac{\partial U}{\partial T} \right)_V dT \]

Prof. Mueller
Chemistry 451 - Fall 2003
Lecture 9 - 9
Changes in Internal Energy, 3

\[(\partial U / \partial V)_T \], the change in internal energy as the volume a substance occupies changes, is denoted as \(\pi_T \) and is called the *internal pressure*.
Changes in Internal Energy, 4

\[\pi_T = \left(\frac{\partial U}{\partial V} \right)_T \]

\(\pi_T \) is a measure of cohesive forces in the sample:

\[dU = \pi_T dV + C_V dT \]

\(dU > 0 \), internal energy increases, \(dV > 0 \), volume expands isothermally and with attractive forces dominating

\(\pi_T > 0 \)

For a perfect gas, \(\pi_T = 0 \), and internal energy is independent of the volume of gas in the sample.
James Joule thought he could measure internal pressure with the apparatus at the right - high pressure gas expands into a vacuum - however, no change in temperature is measured: WHY?

expansion into vacuum: \(w = 0 \)
no heat transfer: \(\Delta T = 0 \), so \(q = 0 \)
consequently: \(\Delta U = w + q = 0 \)
therefore: \(\pi_T = 0 \)

Actually, the heat capacity of his crude apparatus was so large, that the temperature change caused by this expansion of gas was simply too small to measure - so small deviations of real gases were not detected...
Changes in Internal Energy at Constant p

How does internal energy vary with temperature at constant pressure?

$$dU = \pi_T dV + C_V dT$$

Divide both sides above by dT, and impose constant pressure:

$$\left(\frac{\partial U}{\partial T} \right)_p = \pi_T \left(\frac{\partial V}{\partial T} \right)_p + C_V$$

The differential on the RHS describes change in volume at constant pressure with changing temperature, and is related to the expansion coefficient, α, of a pure substance:

$$\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_p$$

Large α: big responses to changes in temperature.
Changes in Internal Energy at Constant p

Table 3.1 Expansion coefficients (α) and isothermal compressibilities (κ_T)

<table>
<thead>
<tr>
<th>Substance</th>
<th>$\alpha/10^{-4}$ K$^{-1}$</th>
<th>$\kappa_T/10^{-6}$ atm$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene</td>
<td>12.4</td>
<td>92.1</td>
</tr>
<tr>
<td>Diamond</td>
<td>0.030</td>
<td>0.187</td>
</tr>
<tr>
<td>Lead</td>
<td>0.861</td>
<td>2.21</td>
</tr>
<tr>
<td>Water</td>
<td>2.1</td>
<td>49.6</td>
</tr>
</tbody>
</table>

More values are given in the Data section at the end of this volume.

For an ideal gas where $pV = nRT$

$$\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_p = \frac{1}{V} \left(\frac{\partial (nRT/p)}{\partial T} \right)_p = \frac{nR}{pV} = \frac{1}{T}$$
Changes in Internal Energy at Constant p

Substitute α into the expression for $(\partial U/ \partial T)_p$:

$$
\left(\frac{\partial U}{\partial T} \right)_p = \alpha \pi_T V + C_V
$$

The dependence of internal energy upon temperature at constant pressure can be measured in terms of C_V and α (two different experiments) and π_T.

For a perfect gas, since $\pi_T = 0$:

$$
\left(\frac{\partial U}{\partial T} \right)_p = C_V
$$

So we know $(\partial U/\partial T)_V = C_V$ and $(\partial U/\partial T)_p$ above - in our experiments, we can easily use the simpler first expression by **controlling volume**: i.e., at constant volume, $w = 0$, and $\Delta U = q_V$.