The following are a set of guidelines to follow when writing formal reports.

A. General:
 1. Research literature for procedures is a *template* for your research projects. You are encouraged to deviate and extrapolate as needed.
 2. Rough drafts *must* be attached to the final drafts for complete credit. This ensures that points are added to the areas that are in need of improvement – provided that changes are actually made.
 3. Continuous, logical flow is expected, as is a report virtually void of spelling and grammatical errors. Substantial points will be deducted for poor spelling and grammar.
 4. Sentences in all sections should be written in a manner that is void of open-ended ideas/thoughts. **If you introduce a concept, explain it completely in an intelligent, concise statement or group of statements.**

B. Specific Section Guidelines:
 1. The introduction should give a substantial background of the experimental topic(s), appropriately referenced, and at least 1-2 sentences discussing the relevance of performing the experiment.
 2. The “Procedure” section should be named Experimental and divided into subsections of Procedure or Methods, and Instrumental. General procedural information goes into procedure/methods, and specific instrumental information goes into instrumental. Don’t be reluctant to include a few qualitative statements in the procedure subsection for the most important portions of the experiment – for example – 50 mL of HCl were added to the solution, upon which plumes of gas evolved.
 3. The procedure subsection of Experimental should be referenced, and presented in paragraph form – containing actual detailed procedural sentences from your lab notebook for the most pertinent of information – this is a deliberately vague hint – part of the lab report writing is for you to determine which aspects of a lab are the most important. Avoid sequential language such as *next, then, first, last*, etc. The past tense is preferred.
 4. Calculations and tables, as well as data concerning calibration curves should be typed. Reproduce the graphs from the notebook into an Excel spreadsheet and plot – being careful to adjust your calculations for the more exact intercepts and slopes.
 5. For tables and graphs, include a sentence or two denoting what the tables and graphs represent.
 6. The discussion section should include hard data and a good flow. The conclusion should not include hard data, but should restate the most important findings of the experiment – often in a stronger, more definitive language than earlier in the report.
7. When writing the introduction, discussion, and conclusion, blend data and concepts together smoothly.

C. Plagiarism:
1. Reference, reference, reference!!!!!!!!!
2. Any idea, concept, illustration, drawing, etc. that is not 100% yours should be referenced appropriately. This includes sentence rearrangements, paraphrasing, etc. Your TA will provide an exact format of how to reference journals, books, and other materials.
3. When in doubt, reference!
4. Plagiarism Rules/Penalties
 a. Occasional non-referenced material in a lab report will result in a one-letter grade reduction.
 b. Frequently non-referenced material, and/or exact words and sentence structures from the source will result in a zero for the assignment.
 c. Blatant disregard for the integrity of source materials (including, but not limited to, the exact fonts, subtitles, and word choice as the source work) and/or no referencing at all will result in a failing grade for the course.

Emphasizing the Right Thing at the Right Time:
Higher-Order and Lower-Order Concerns in Writing
Brad Hughes, English Department, University of Wisconsin-Madison

It is especially helpful in a discussion of good writing to differentiate between higher- and lower-order writing concerns. You should focus on conceptual-level planning and revisions before lexical-level revisions.

Higher-Order Concerns - Generic whole-text issues such as ideas or content, focus, genre, argument, thesis, development, organization, clarity of purpose, awareness of audience.

• Does your draft respond specifically and appropriately to the demands of the assignment? (Read the Lab Guide!)
• Do you understand the readings (data, field observations, lab experiment) that you’re writing about?
• Do you have something worth saying? Does the draft make points. appropriately sophisticated (original, interesting, provocative...) for the assignment, the level of the course, etc.?
• Does the draft have clear main points?
• Does the draft match or fulfill your intentions? Does the draft do justice to your ideas?
• Is the draft effectively organized? Does it follow a logical sequence of points?
• Are points adequately developed and explained?
• Is there appropriate and sufficient evidence to support the main points?
• Does the introduction effectively signal the topic, scope, and organization of the paper?
• Are paragraphs unified and well-developed?

Lower-Order Concerns – Generic lexical issues at the paragraph, sentence and word levels ...

• Are there effective transitions between sections?
• How can the style be improved?
• Are there muddy or confusing sentences?
• Where do sentence or word problems interfere with your communicating clearly with readers?
• Are there any grammatical errors?
• How can the word choice be improved?
• Are there punctuation errors?
• Have you carefully proofread your draft to make sure you caught all obvious mistakes?
Many scientists are far more comfortable performing scientific experiments than they are reporting their findings. Although they could benefit from the excellent books available on scientific writing, they may not have time to read these comprehensive articles. As a result, considerable data either are not reported or are published in ways that inadequately express their significance.

This article was written to complement the extensive reviews. It presents techniques for optimally relaying the content and meaning of scientific studies and for avoiding common problems. It begins with simple strategies to construct succinct sentences that are easy to read and understand. It then discusses key features of the standard journal sections, tables, and figures and suggests strategies for their effective construction.

Writing Style

Succinct Sentences

Well-constructed sentences are succinct. They are easy to read and understand. Succinct sentences unambiguously relay content and meaning. The five topics of this section describe methods for writing succinct sentences. You should try to construct the major part of manuscripts with succinct sentences. Less succinct sentences may be used for emphasis or to break up a string of succinct sentences that have become monotonous.
Tangible noun subjects

The following suggestion is probably the most important recommendation in this article. Use a *tangible noun as the subject of the sentence*. The key to writing a succinct sentence is to select the proper subject for that sentence. Tangible noun subjects are meaningful subjects. They immediately direct the reader to the focus of the sentence. Whenever possible and appropriate, use a tangible noun as the subject of the sentence.

The following examples demonstrate the advantages of switching the subject (italicized) to a tangible noun. Notice the ease of reading and understanding the "succinct" sentences. In contrast, the subjects of the "original" sentences cause the reader to search for the intended meaning.

1. *Original:* In the rat, the *metabolism* of CX80 is characterized by the formation of three-polar compounds.
 Succinct: Rats metabolize CX80 to three polar compounds.

2. *Original:* Another *issue* that concerns the authors focuses on the interpretation of the *in vitro* data.
 Succinct: The authors are also concerned with the interpretation of the *in vitro* data.

3. *Original:* The *modification* of the method of Smith (ref) led to the generation of acceptable data.
 Succinct: Acceptable data were generated by modifying the method of Smith (ref).

4. *Original:* Elevation of intracellular ATP was observed following i.v. administration of compound Q.
 Succinct: Intracellular ATP was elevated following i.v. administration of compound Q.

Several words are giveaways for detecting convoluted sentences with weak subjects.

1. Excess prepositions: Note that three prepositions (*In, of, and by*) were eliminated by changing the above Example 1 to the succinct form.

2. *It* and *there* used as false subjects: Examples:
 (a) It is of concern to the authors....
 (b) There exists in the rat....

Subject-Verb Location and Agreement

People are easily lost in the forest between the subject and the verb. Keep your readers on track by placing the verb as close to the subject as possible. Gopen and Swan (1) discuss how intervening words interrupt the reader's expectations. In addition, subjects and verbs must agree in number (singular and plural forms). You can consult Dodd (2) for a discussion of this topic.

Active/Passive Voice and First Person

Although the active voice is more succinct than the passive voice (3), many scientists prefer the latter. They believe that the passive voice is more objective and, therefore, more suitable for scientific writing. I suggest using the active voice wherever appropriate. Using active voice in Example 1 under "Tangible noun subjects" added to the clarity of the sentence.

Sentence 1 (below) is an appropriate use of the first person active voice. Here, the authors are drawing the conclusion. However, overuse of "we" or "I" can seem obnoxiously egocentric. Sentences 2 & 3 are examples of active and passive voice, respectively.

1. We conclude that the mechanism must be concerted.
2. Nucleophiles generate superoxide radical. (active)
3. Mice were treated with methotrexate. (passive)

Dangling and Misplaced Modifiers

Make sure that modifiers actually modify what they are intended to modify. Otherwise, they may distort the meaning of a sentence. The following dangling participial phrases (italicized) lead the reader to wonder how the centrifuge turned the dial and who was incubated or was lying on the intestine.

1 A tangible noun represents something that is touchable or concrete. The subject of a sentence does the action (active), is acted upon (passive), or is described or identified.
1. Original: Turning the dial to 60,000 rpm, the centrifuge started.
 Corrected: The centrifuge was started by turning the dial to 60,000 rpm.

2. Original: Having incubated for 30 mm at 37, we placed the vials on ice.
 Corrected: The vials were placed on ice after they had incubated for 30 min at 37.

3. Original: Lying on top of the intestine, you will perhaps make out a small transparent thread.
 Corrected: You may see a small transparent thread lying on top of the intestine.

The misplaced modifier and phrase (italicized) in these sentences substantially alter the intended meaning.

1. Original: The cells only secreted small amounts of peptide X.
 Corrected: The cells secreted only small amounts of peptide X.

2. Original: A large mass of literature has accumulated on cell walls of staphlococci.
 Corrected: A large body of literature on cell walls of staphlococci has accumulated.

Wordiness

Words that don't enhance content or meaning may bog down the reader. For example, the boldface words in the following sentence are either superfluous or redundant and should be deleted.

1. Original: We plan additional studies in the future in order to confirm previous experiments where replicate determinations consistently showed the pool sizes to essentially increase.
 Improved: We plan studies to confirm experiments where replicate determinations showed an increase in pool sizes.
 Better: We plan to confirm the experiments that repeatedly showed an increase in pool sizes.

The next sentence also becomes more readable as it is shortened. It is converted to a succinct sentence by replacing the false subject with a tangible noun and by using active instead of passive voice.

2. Original: It has been reported (ref) that hydroxyurea selectively decreases purine deoxynucleotide pools.
 Improved: Hydroxyurea was reported (ref) to selectively decrease purine deoxynucleotide pools.
 Better: Hydroxyurea selectively decreases purine deoxynucleotide pools (ref).

Empty phrases can often be reduced to simple words. For example, the phrase, in the vicinity of, means “near”. A list of “empty phrases” and “words to avoid” are reported by Hutli (4) and Day (3).

Verb Tense

Many authors struggle with the use of past and present verb tense. The rules, however, are simple.

1. Use the present tense to describe experiments and data that have been established and exist in the literature. e.g. Compound 6 is inefficiently degraded by guanosine hydrolase (ref).

2. Use the past tense to describe experiments and data of your present manuscript. e.g. Compound 6 was inefficiently degraded by guanosine hydrolase. (See the table on the next page.)

Word and Number Selection

The following items frequently surface as problems in scientific manuscripts.

Affect/Effect

Stick to the most common and least troublesome use of these words. Use affect as a verb meaning "to change or influence", and effect as a noun meaning "a result or consequence".

1. Excess acid will affect the yield.
2. He studied the effect of excess acid.

That/Which

2 Example from Day (3).
People seem to be agreeing that *that*, which appears without a comma, should be used to introduce restrictive clauses, and that *which*, which appears with a comma, sets off nonrestrictive clauses. Strunk and White (5) advise to "go on a which hunt" to make articles more readable. The restrictive clause italicized in sentence 1 is necessary to the meaning of the sentence; whereas, the nonrestrictive clause underlined in Sentence 2 is not.

1. Only drugs *that stop the virus from integrating into the human genome* prevent chronic infections.

2. The mechanism, *which may be concerted*, is difficult to prove.

In Vitro/In Vivo

The term "in vitro" refers to experiments performed in an artificial environment with tissues, cells, organs, enzymes, fluids, etc. removed from living organisms. In vivo experiments are performed within living organisms. Thus, experiments with parasites and viruses in cultured cells are in vitro studies, or studies in culture, and differ from in vivo studies of infected animals or plants.

Jargon

Either carefully define or delete any laboratory terms that are not well established in the literature. Some examples of jargon follow. A correction appears in parentheses after the jargon.

2. *Reactions* (reactants) were mixed in a glass vial.
3. *Proteins were* (protein concentration was) determined by the Bradford assay (ref).

Auxiliary Verbs in Compound Sentences

Auxiliary verbs should not be omitted when subjects change in compound sentences. The auxiliary verb "was" is needed in the second part of the following sentence to prevent the voice from switching from passive to active. Obviously, radioactivity cannot count. This type of error is commonly found in methods sections.

Original: Scintillation fluid was added and the radioactivity counted.

Corrected: Scintillation fluid was added and the radioactivity was counted.

Significant Digits

The number of significant digits in data should not exceed the precision of the determination. Because errors denote the magnitude of uncertainty, they should be presented with only one significant digit. Furthermore, this digit determines the least significant digit of the reported value. Thus, the leftmost place of the error determines the rightmost significant digit of the value. Accordingly, the K_m for Compound 1 in the table is 15 ± 1 and not 15.32 ± 1.27, and the K_m of Compound 6 is 120 ± 10, and not 122 ± 11.

<table>
<thead>
<tr>
<th>Substrate</th>
<th>$K_m \pm $ S.E. (µM)</th>
<th>$V_{max} \pm $ S.E. (µmol/min/unit)</th>
<th>V_{max}/K_m (relative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guanosine*</td>
<td>30 ± 2</td>
<td>1.30 ± 0.07</td>
<td>100</td>
</tr>
<tr>
<td>Compound 1</td>
<td>15 ± 1</td>
<td>1.2 ± 0.1</td>
<td>190</td>
</tr>
<tr>
<td>Compound 2</td>
<td>5 ± 1</td>
<td>0.17 ± 0.03</td>
<td>78</td>
</tr>
<tr>
<td>Compound 3</td>
<td>6 ± 1</td>
<td>0.19 ± 0.02</td>
<td>73</td>
</tr>
<tr>
<td>Compound 4</td>
<td>66 ± 6</td>
<td>0.19 ± 0.01</td>
<td>6.6</td>
</tr>
<tr>
<td>Compound 5</td>
<td>200 ± 20</td>
<td>0.029 ± 0.004</td>
<td>0.33</td>
</tr>
<tr>
<td>Compound 6</td>
<td>120 ± 10</td>
<td>0.00097 ± 0.00006</td>
<td>0.019</td>
</tr>
</tbody>
</table>

Substrate Specificity of Canine Guanosine Hydrolase

a Reference substrate: specific activity was 450 mol/min/mg.

Editing

You are encouraged to have several colleagues comment on the content, construction, and style of your manuscript. Even accomplished writers benefit by critical reviews of their manuscripts. Peer reviewers are easy to find. Even some not-so-highly skilled writers may be clever reviewers. Remember to encourage your reviewers to be frank. Honesty may be more valuable than politeness.
The review process also allows you to distance yourself from your article. Writers often are too close to their writing. You may not adequately describe complex material for the uninitiated, or you may not present a clear overall picture. Your colleagues' perspectives can be useful, but don't let too many cooks spoil the broth. Weigh all the opinions before making changes.

Manuscript Sections

General comment. You should definitely read through your selected journal's "instructions to authors" before writing your manuscript. Each journal has different ways of including specific parts. Editors appreciate receiving properly formatted manuscripts.

Titles

Although the details of the title page are specified in the instructions for each journal, suggestions for title selection may not be adequate. Titles should be short, revealing, and enticing, but generally do not contain an active verb. Because most people scan titles by looking at their beginning and ending, the most important words should be located in these places. A bold phrase or name (heading) ending with a colon and followed with a descriptive phrase (subtitle) provides initial recognition plus crucial information. For example, *Human Sulfite Oxidase: Irreversible Inactivation by Futile Chloride*, readily draws attention to key elements when it appears as:

Human Sulfite Oxidase:
Irreversible Inactivation by Futile Chloride

Introduction

This is the most important section for manuscript construction. It provides background information that describes and justifies the need for or advantage of the scientific study. It then clearly defines the purpose or problem, explains the approach taken, and may end with a brief summary of the findings. Thus, a well-written introduction structures the entire manuscript. *Authors who write this section first usually find that the rest of the manuscript readily flows from it.*

Results

This is usually the most straightforward and easiest section to write. Results should contain an objective and clear description of the experimental findings presented in a logical sequence that unravels the story and aids the reader's understanding. This sequence is not necessarily the chronological order in which the experiments were performed.

Save most explanation and interpretation for the discussion section.

Tables

The table above is an example of a well constructed table.

- The title is simple and clear.
- The column headings are accurate and contain the units.
- The uncluttered data are easy to read and understand without reference to the text.
- The data are sorted (after the reference compound) in decreasing value by the most important column (V_{max}/K_m).
- The absolute value of the reference compound is reported as a table footnote.
- The number of significant digits in the values do not exceed the precision of the determination.

Figures

The sample figure shown below exemplifies an easily understood figure.

- The purpose of the figure is readily discernible by visual inspection.
- The title of the figure is clear, simple, and relevant.
- The legend contains adequate information to understand the figure.
- The uncrowded figure contains adequate and balanced white-space.
- The curves are labeled within the figure (if acceptable by the journal) to avoid the need to flip visually between the graphic and the legend.
- The curves don't extend beyond the data points.
• The symbols clearly distinguish the curves.
• The axes are labeled clearly and have meaningful values with appropriate intervals.
• The text remained legible after photographic reduction.

Discussion

This section brings out the significance of your work and relates it to the literature (and to your introduction). Although a brief rehash of results may be appropriate, this is not the place to present results. Discuss, interpret, and comment on all significant findings and discrepancies which are better discussed here than left as fodder for potential critics.

Your manuscript will be much easier to write and will read much better the first time if you take the time to do a "paper and pencil" preliminary outline of the points to be discussed. This approach keeps the manuscript flowing in a logical way and prevents rambling.

Readers tend to remember best what they read first and last. So cover the most important items first, and don't try to bury items of doubt by saving them for last. End your discussion with a positive and optimistic conclusion concerning the most favorable aspect of your study.

Experimental Detailed specifics of this section are given in Section IX.3 and Appendix C of the Chem 431W Lab Guide.

References or Literature Cited Section

Consult the particular journal's instructions to authors for the reference format. Almost all are different. They also locate citations to unpublished data in different sections. Because this is an error-prone section, proofread and verify the references; neither the reviewers nor the technical editors have the time to do this for you. Some libraries and technical information departments provide this service.

Acknowledgement

T. Spector is grateful to the many authors (himself included) whose literary errors inadvertently provided the basis of this article, an thanks the reviewers and editors who helped prevent this article from contributing to that collection. D. Porter, R. Miller, and J. Spector were especially helpful reviewers of earlier drafts.

Literature Cited
“Precise Writing for a Precise Science”

Derived from Roger K. Bunting, Journal of Chemical Education • Vol.76 No.10 October 1999. 1408

Despite the pervasive necessity of effective communication skills in virtually any contemporary career endeavor, a good command of the tools of communication seems to have eluded a great many graduates of chemistry programs. Poor sentence construction and grammatical solecisms are all too common in both written and oral reports of scientific findings. The English language is the principal tool of modern scientific communication, and its effective use should be a goal of anyone preparing for a career in science.

Following is a collection of examples of familiar grammatical constructions, presented in scientific context, that could be better phrased in accordance with the commentary that follows each

Examples

The product has a melting point similar to benzophenone.

A melting point in no way resembles a chemical compound, but it may resemble another compound's melting point. The sentence should read “... a melting point similar to that of benzophenone.”

Solubility was the principal criteria for choosing the nitrate salt.

Criterion and phenomenon are two words of Greek origin often misused as their plurals.

The NMR spectra of compound 1 is shown in Figure 3.

Spectrum (of Latin origin) is often casually replaced with its plural, spectra, by those who most often utilize spectroscopy.

The GC spectrum showed three peaks.

Gas chromatography does not yield a spectrum, but a chromatogram. “The gas chromatogram showed three peaks.”

Pentaborane and ammonia were reacted at low temperature.

Few besides chemists are brazen enough to use react as a transitive verb. The chemicals react, chemists don’t react them. This usage is quite common, however, but it makes one wonder about the user's understanding of thermodynamics.

There was very little data to support the conclusion.

In chemistry, data is still commonly used in the plural sense, and most chemists are careful to write data are instead of data is. The error is less obvious here, however, and this construction is often seen and heard. The sentence should read "There were very few data". (As a simple check, if a sentence doesn't sound right when data is replaced by facts; it probably isn't correct.)

A simple IR spectrum infers a highly symmetrical structure.

Infer means to draw a conclusion - the responsibility of the spectroscopist not the spectrum. One could say that the spectrum implies, but this too is a personification. A better sentence would be "A highly symmetrical structure can be inferred from a simple IR spectrum."

Compounds which contain azido groups are often explosive.

The subordinate clause is "restrictive": that is, the sense of the sentence is changed if it is omitted. Restrictive clauses should begin with that. The sentence should read "Compounds that contain azido groups". Nonrestrictive clauses, which are not essential to the meaning of the sentence, begin with which and are set off with commas. The following is an example using a nonrestrictive clause: "Azido compounds, which contain the N\textsubscript{3} group, are often explosive.

We abandoned our work with nitrogen trichloride when we realized it was explosive.

No chemist would misunderstand the intended meaning, but the sentence literally says that the work was explosive. The intended antecedent of the pronoun it is the object of the preposition with. The sentence should read "... when we realized the compound was explosive." Ambiguity from a casual use of pronouns is all too common.

Applying VSEPR principles, the most likely structure was predicted to be planar.
Applying is a dangling participle. There is no noun that it could modify except structure, and the structure clearly did not apply the principles. The sentence should be rephrased as follows: "By application of VSEPR principles...". Equally poor are sentences like “The solution was filtered, resulting in the recovery of the product.” Which resulted should be used in place of resulting.

The ester dissolved in benzene was saponified.

This is a very poor construction because dissolved could be either be a verb or a participle, and the sense is not dear until the reader reaches the end of the sentence. A better construction would be "The ester was dissolved in benzene and saponified."

The crystals darkened, which indicated there had been decomposition.

The past perfect tense "had been" implies an event more remote than the past tense. Presumably the crystals darkened at the same time that the decomposition occurred, not subsequent to it. Both verb forms should be in the past tense, or both in the past perfect.

Submit your vitae and the names of three references.

Cats, superstition has it, are endowed with multiple lives, but not chemists. Here the plural vitae has been used for the singular vita (Latin), which means life. In the above context, vita refers to a summary of one's professional life. This misuse is common in classified advertisements. Curriculum vitae, however, is a proper singular form ("course of life"), declined according to the rules of Latin.

And what is the name of a reference? Probably the writer meant the names of three referees. A citation lists a reference; a person consulted is a referee.

The coordination of metal ions in aqueous solution is generally octahedral.

A general rule is one that always applies. A better choice in the above sentence would be usually or commonly or typically octahedral.

Ammonia readily complexes with many transition metals.

It's been said that any noun can be "verbed", and most verbs no doubt had their origins in nouns, but complex is not yet widely accepted as having attained verb status. In the above sentence complexes could be easily (and preferably) used as a noun: "Ammonia readily forms complexes".

A scientific report ought to be presented with a level of rigor and precision of the language commensurate with those of the scientific findings. However, a rigid adherence to all grammatical "rules" would render a writing devoid of style, and such adherence is by no means mandatory or even recommended. But an understanding of the rules, their origins, and their contemporary interpretations allows the informed writer or speaker to selectively use grammatical devices to his or her advantage, to most effectively convey the information so that it will be received in the manner intended.

References

General Reviews